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1  SUMMARY 
This paper describes the use of the Weibull cumulative density function (CDF) for 
characterizing the life data of wooden poles. The Kaplan-Meier technique is used for 
point estimates of cumulative probabilities. Correlation is evaluated using the coefficient 
of determination (COD) for the CDF transformed to a linear relation by means of two 
successive natural logarithmic operations. 

The analysis can be used for the following purposes. 

• To determine whether the failure rate is decreasing, constant or increasing. 

• To forecast the number of failures as a function of age. 

• To compare the performance of different species and different preservation 
techniques.  

• To assist in developing a replacement strategy. 

2 INTRODUCTION 
The four decades following World War II represented a period of considerable expansion 
for utilities in North America. Many of the products installed during that era are now 
approaching the end of their physical or economic life. The challenges for utilities have 
therefore shifted from those associated with construction to the cost effective, safe, and 
environmentally acceptable replacement of aging products. Included within these aging 
products are wooden poles of a variety of species and preservation techniques. Many of 
these poles are now approaching the end of their useful life because rot is jeopardizing 
their structural integrity. 

Statistical techniques for quantifying the reliability of products as a function of age have 
been developed and applied in the aircraft and aerospace industries during the past five 
decades. Similarly statistical techniques have been developed and applied for many 
decades in the medical field for quantifying various phenomena as a function of age. 
More recently these techniques have been successfully applied to assist in assessing 
business risks and to improve the quality of decisions associated with the replacement of 
products. 

The Weibull function is the most appropriate probability function in the vast majority of 
situations. The classical Weibull technique for estimating point values of the cumulative 
probability requires reasonably accurate life data for the population of interest, from the 
date of installation. Unfortunately this information is often unavailable in utilities. 
However utilities often have data for a complete population at a particular time and as a 
function of age. The Kaplan-Meier technique (developed within the medical industry) is 
suitable for this kind of data. The Kaplan-Meier technique is also more suitable than the 
Weibull technique for large amounts of data, which is often the case with wooden poles.  

Using Kaplan-Meier point estimates to estimate the parameters of the Weibull CDF 
usually yields a Weibull CDF with acceptable correlation. However even when the 
correlation is unacceptable the curve provides insights into the reasons for poor 
correlation. 
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Of course inferences from the assumed function are meaningless if the fit between the 
function and the data is poor. Fortunately the fit can be quantified by means of the COD 
used commonly for liner relations. The Weibull can be transformed to a linear function 
by two successive logarithmic operations, from which the COD can be calculated.  

It is important to note that statistical analyses are not a substitute for engineering 
judgement and common sense. 

3 METHODOLOGY 
Results of inspections of populations of wooden poles are often available for an interval. 
The results are usually arrayed by age, species, and preservation techniques. In this case 
the Kaplan-Meier technique is appropriate for point estimates of the cumulative 
probability of failure (R.B. Abernethy, 2000). 
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where: 

“P[t≥tk]” is the probability of survival to time tk. 

“t” is time in years. 

“tk” is the time to the end of the kth inspection interval. 

“fi” is the number of failures at the end of the ith inspection interval. 

“ni” is the number of poles inspected in the ith inspection interval. 

“k” is the number of inspection intervals. 

“F(tk)” is a point estimate of the probability of failure by time tk. 

The associated cumulative density function is the Weibull function. 
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where: 

“F(t)” is the cumulative probability of failure by time t. 
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“t0” is the time correction. 

“η” is the characteristic life (scaling factor). 

“β” is the shape factor. 

The parameters β and η are estimated using least squares techniques. 
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The coefficient of determination (COD) is determined as follows. 
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The COD varies from zero to unity A value of zero means that there is no correlation. A 
value of unity means that the correlation is perfect. Correlation improves as the COD 
approaches unity. There are graphs available to judge whether correlation is acceptable. 
The graphs are a function of the type of probability density function and the number of 
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inspection intervals (in this case). If the value of the COD is too low, the graph of the 
data should be examined for possible batch problems, mixtures of failure modes, and 
mixtures of failure mode classes. 

The shape factor β indicates whether the failure rate is decreasing, constant, or 
increasing. 

• A value of β less than unity generally indicates that wear-in is represented within 
the population.  

• A value of β of unity indicates that random failures are represented within the 
population.  

• A value of β exceeding unity indicates that wear-out is represented within the 
population.  

The scale factor η indicates the age by which 63.2% of the population is estimated to fail.  

The performance of different species and preservation techniques can be compared, either 
by specific age or by the mean time to failure (MTTF). 
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Future failures can be forecast for each age group. 
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where: 

“T” is the total number of failures. 

“ti” is the age of the ith age group. 

“u” is the interval. 

“si” is the number of survivors in the ith age group. 

“F(ti)” is the probability of failure by age “ti”. 

“F(ti + u)” is the probability of failure by age “ti + u”. 

“k” is the number of age groups. 

Note that the forecast is sensitive to correlation and is usually not effective for forecasting 
beyond a few units of time. 

The cost per unit time can be expressed as follows (R.B. Abernethy, 2000). 
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where: 

C(t) is the unit cost. 

P is the planned replacement cost. 

U is the unplanned replacement cost. 

F(t) is the cumulative probability of failure to time t. 

4 RESULTS AND DISCUSSION 
Mr. Wayne Ortiz of Manitoba Hydro kindly provided inspection data on wooden poles. 
The following data were analyzed as examples of the application of the techniques 
described in this paper. The analyses were done with an incomplete knowledge of the 
data collection so is for illustrative purposes only.  

• Jack Pine poles with creosote preservation 

• Jack Pine poles with penta preservation 

• Western Cedar poles with creosote preservation 

• Western Cedar poles with penta preservation 

Tables 1 to 4 inclusive and Figures 1 to 4 inclusive show the regression analyses and 
results. General observations are as follows. 

• Correlation is satisfactory for the four analyses. 

• The failure rate is increasing in all cases. Wear-out is therefore represented in all 
populations. 

The best correlation for the Jack Pine and Western Cedar poles with creosote 
preservation was obtained with a positive time shift. This suggests that with this 
preservative rot does not occur for a finite time. The best correlation for the Jack Pine 
poles with penta preservation was obtained with a two-parameter Weibull function (i.e. 
without a time shift). This suggests that rot proceeds more quickly than for creosote 
preservation or that the poles may have been stored for some time before being installed. 
The best correlation for the Western Cedar poles with penta preservation was obtained 
with a negative time shift. This suggests that the poles may have been stored for some 
time before being installed. Of course these comments are only conjecture. A technical 
assessment is necessary to fully explain the differences in performance. The values of 
COD are as follows. 

• Jack Pine poles with creosote preservation – 0.987 

• Jack Pine poles with penta preservation – 0.994 
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• Western Cedar poles with creosote preservation – 0.990 

• Western Cedar poles with penta preservation – 0.988 

The expected number of failures for the next three-year period was estimated as follows.  

• Jack Pine poles with creosote preservation – 480 

• Jack Pine poles with penta preservation – 100 

• Western Cedar poles with creosote preservation – 980 

• Western Cedar poles with penta preservation – 1330 

In this case the Jack Pine poles with creosote preservation appear to have significantly 
greater longevity on average than the Jack Pine poles with penta preservation. Jack Pine 
poles also appear to have greater longevity than Western Cedar poles. The mean times to 
failure are as follows. 

• Jack Pine poles with creosote preservation – 126 years 

• Jack Pine poles with penta preservation – 63 years 

• Western Cedar poles with creosote preservation – 54 years 

• Western Cedar poles with penta preservation – 58 years 

From the values of the shape factor it seems that once rot has started it proceeds more 
rapidly in penta treated poles than creosote treated poles. It also seems that once rot has 
started it proceeds more rapidly in Western Cedar poles than in Jack Pine poles. 

Sometimes safety or environmental concerns dictate a maximum allowable value of the 
cumulative probability. The analysis provides the corresponding age, so replacement can 
be planned. Replacement ages for a maximum cumulative probability of 10% are as 
follows. 

• Jack Pine poles with creosote preservation – 52 years 

• Jack Pine poles with penta preservation – 40 years 

• Western Cedar poles with creosote preservation – 31 years 

• Western Cedar poles with penta preservation – 38 years 

Sometimes the cost of unplanned maintenance exceeds the cost of planned maintenance 
significantly. The analysis yields the age at which planned replacement represents the 
least per unit cost. For example the least cost replacement age for Jack Pine poles with 
creosote is approximately 90 years if the cost of unplanned replacements is five times that 
of planned replacements, and 60 years if the cost of unplanned replacements is ten times 
that of planned replacements. 

5 CONCLUSIONS 

The Weibull cumulative probability function, using the Kaplan-Meier technique for point 
estimates of the cumulative probability of failure, can be used for the following. 

• To quantify the relation between the cumulative probability and age. 
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• To forecast required replacements. 

• To compare species and preservation techniques. 

• To estimate the age at which poles should be replaced for safety or environmental 
reasons. 

• To estimate the age at which planned replacement represents the least cost 
alternative. 
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Second edition, H. Kumamoto and E.J. Henley, IEEE Press 
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Table 1. Manitoba Hydro Jack pine poles with creosote 
A B C D E F G H I J K 

t-t0 (y) fi  ni 1-fi/ni KM 1-KM 
'X' = 
ln(A) 'Y' = ln(ln(1/(1-F))) 'Y2' = H2 

'YX' = 
G*H 'X2' = G2 

3.30 2 593 0.997 99.7% 0.3% 1.19 -5.69 32.38 -6.79 1.43 
6.30 4 755 0.995 99.1% 0.9% 1.84 -4.75 22.52 -8.73 3.39 
9.30 8 2036 0.996 98.7% 1.3% 2.23 -4.37 19.11 -9.75 4.97 

12.30 32 1684 0.981 96.9% 3.1% 2.51 -3.45 11.89 -8.65 6.30 
15.30 4 579 0.993 96.2% 3.8% 2.73 -3.25 10.57 -8.87 7.44 
18.30 11 554 0.980 94.3% 5.7% 2.91 -2.83 8.03 -8.24 8.45 
21.30 8 1065 0.992 93.6% 6.4% 3.06 -2.71 7.36 -8.30 9.36 
24.30 17 1133 0.985 92.2% 7.8% 3.19 -2.51 6.29 -8.00 10.18 
27.30 23 1647 0.986 90.9% 9.1% 3.31 -2.35 5.51 -7.77 10.94 
30.30 120 12309 0.990 90.0% 10.0% 3.41 -2.25 5.07 -7.68 11.64 
33.30 52 7391 0.993 89.4% 10.6% 3.51 -2.19 4.78 -7.66 12.29 

 
 

Table 2. Manitoba Hydro Jack pine poles with penta 
A B C D E F G H I J K 

t-t0 (y) fi  ni 1-fi/ni KM 1-KM 
'X' = 
ln(A) 'Y' = ln(ln(1/(1-F))) 'Y2' = H2 

'YX' = 
G*H 'X2' = G2 

16.00 3 1332 0.998 99.8% 0.2% 2.77 -6.0947 37.15 -16.90 7.69 
19.00 4 1105 0.996 99.4% 0.6% 2.94 -5.1360 26.38 -15.12 8.67 
22.00 6 1142 0.995 98.9% 1.1% 3.09 -4.4964 20.22 -13.90 9.55 
25.00 5 1677 0.997 98.6% 1.4% 3.22 -4.2591 18.14 -13.71 10.36 
28.00 7 630 0.989 97.5% 2.5% 3.33 -3.6766 13.52 -12.25 11.10 
31.00 6 465 0.987 96.2% 3.8% 3.43 -3.2624 10.64 -11.20 11.79 
34.00 8 361 0.978 94.1% 5.9% 3.53 -2.8017 7.85 -9.88 12.44 
37.00 9 362 0.975 91.8% 8.2% 3.61 -2.4548 6.03 -8.86 13.04 
40.00 5 147 0.966 88.6% 11.4% 3.69 -2.1162 4.48 -7.81 13.61 
43.00 5 217 0.977 86.6% 13.4% 3.76 -1.9393 3.76 -7.29 14.15 
46.00 8 348 0.977 84.6% 15.4% 3.83 -1.7894 3.20 -6.85 14.66 
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Table 3. Manitoba Hydro Western Cedar poles with creosote 
 

A B C D E F G H I J K 

t-t0 (y) fi  ni 1-fi/ni KM 1-KM 
'X' = 
ln(A) 'Y' = ln(ln(1/(1-F))) 'Y2' = H2 

'YX' = 
G*H 'X2' = G2 

10.1 2 104 0.981 98.1% 1.9% 2.31 -3.9416 15.54 -9.11 5.35 
14.1 1 164 0.994 97.5% 2.5% 2.65 -3.6677 13.45 -9.71 7.00 
18.1 11 250 0.956 93.2% 6.8% 2.90 -2.6517 7.03 -7.68 8.39 
22.1 69 1367 0.950 88.5% 11.5% 3.10 -2.1011 4.41 -6.50 9.58 
26.1 112 1185 0.905 80.1% 19.9% 3.26 -1.5068 2.27 -4.92 10.64 
30.1 264 3354 0.921 73.8% 26.2% 3.40 -1.1921 1.42 -4.06 11.59 
34.1 158 1956 0.919 67.9% 32.1% 3.53 -0.9472 0.90 -3.34 12.46 
38.1 203 1788 0.886 60.1% 39.9% 3.64 -0.6766 0.46 -2.46 13.25 
42.1 231 2358 0.902 54.3% 45.7% 3.74 -0.4919 0.24 -1.84 13.99 
46.1 41 376 0.891 48.3% 51.7% 3.83 -0.3190 0.10 -1.22 14.68 
50.1 20 87 0.770 37.2% 62.8% 3.91 -0.0120 0.00 -0.05 15.32 
54.1 10 63 0.841 31.3% 68.7% 3.99 0.1492 0.02 0.60 15.93 
58.1 1 5 0.800 25.1% 74.9% 4.06 0.3250 0.11 1.32 16.50 
62.1 12 41 0.707 17.7% 82.3% 4.13 0.5483 0.30 2.26 17.05 
 

Table 4. Manitoba Hydro Western Cedar poles with penta 
 

7 A B C D E F G H I J K 

t-t0 (y) fi  ni 1-fi/ni KM 1-KM 
'X' = 
ln(A) 'Y' = ln(ln(1/(1-F))) 'Y2' = H2 

'YX' = 
G*H 'X2' = G2 

13.1 1 1263 0.999 99.9% 0.1% 2.5726 -7.14 50.99 -18.37 6.62 
17.1 1 1565 0.999 99.9% 0.1% 2.8391 -6.55 42.89 -18.59 8.06 
21.1 3 2302 0.999 99.7% 0.3% 3.0493 -5.90 34.83 -18.00 9.30 
25.1 31 5348 0.994 99.1% 0.9% 3.2229 -4.76 22.68 -15.35 10.39 
29.1 108 7966 0.986 97.8% 2.2% 3.3707 -3.81 14.50 -12.83 11.36 
33.1 218 9097 0.976 95.5% 4.5% 3.4995 -3.07 9.42 -10.74 12.25 
37.1 333 12918 0.974 93.0% 7.0% 3.6136 -2.62 6.88 -9.48 13.06 
41.1 300 9003 0.967 89.9% 10.1% 3.7160 -2.24 5.02 -8.32 13.81 
45.1 185 3333 0.944 84.9% 15.1% 3.8089 -1.81 3.28 -6.90 14.51 
49.1 94 2162 0.957 81.2% 18.8% 3.8939 -1.57 2.47 -6.11 15.16 
53.1 82 1085 0.924 75.1% 24.9% 3.9722 -1.25 1.56 -4.96 15.78 
57.1 55 532 0.897 67.3% 32.7% 4.0448 -0.93 0.86 -3.75 16.36 
61.1 28 914 0.969 65.3% 34.7% 4.1125 -0.85 0.72 -3.50 16.91 
65.1 2 48 0.958 62.5% 37.5% 4.1759 -0.76 0.57 -3.16 17.44 
69.1 1 3 0.667 41.7% 58.3% 4.2356 -0.13 0.02 -0.57 17.94 
73.1 1 3 0.667 27.8% 72.2% 4.2918 0.25 0.06 1.06 18.42 

 



 

 290

Figure 1
Manitoba Hydro

Jack Pine Poles w/ Creosote
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Figure 2
Manitoba Hydro

Jack Pine Poles w/ Penta
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Figure 3
Manitoba Hydro

Western Cedar Poles w/ Creosote

1.0%

10.0%

100.0%

1.0 10.0 100.0

Age (Years)
ββ  = 2.57, ηη = 50, t0=10

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

of
 F

ai
lu

re
(%

)



 

 293

 

Figure 4
Manitoba Hydro

Western Cedar Poles w/ Penta
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