"Current Trends in Utility Pole Maintenance"

Robert Butera Marketing Manager Osmose, Inc.

Wood Pole Life Cycle Management

Question:

What is your perspective on pole care and maintenance for distribution and transmission wood poles?

Answer:

1. Life Cycle Management of the wood pole plant is absolutely essential for financial success in a deregulated, re-regulated or competitive model.

Purchase & Handling

Maintenance

Restoration vs. Replacement

Replacement

Recycling or Disposal

<u>Answer:</u>

2. The Distribution System represents the greatest risk to electric utility success, and also presents the greatest opportunities for cost reductions and customer retention.

Cost Driver <u>vs.</u> Revenue Generating Asset
Losses <u>vs.</u> Efficient Distribution Channel
Pathway for Competition to your Customers
<u>vs.</u>

Pathway for Your Services and a Toll Road.

Typical Pole Inspection & Treatment Programs for Distribution:

Strengths:

- Focus on reliability & safety.
- Conservative decision making on "reject" poles.
- 3. Emphasis on pole life extension through remedial treatments.
- 4. Extensive information about pole condition & attachments.

Typical Pole Inspection & Treatment Programs for Distribution:

Weaknesses:

- 1. Lack of defined "Management Objectives" for:
 - a.) Economic Outcomes
 - b.) Risk Management
- 2. Lack of integration with utility organization to optimize life cycles of wood poles.
- 3. Replacement decisions not optimized.
- 4. Attribute Information lacks focus and specific uses and users.

Wood Pole Life Cycle Cost Analysis

Assumptions:

Number of Poles	1,000,000		
A verage Replacement Cost	\$1,500		
A verage Restoration Cost	\$325		
Blended Cost @ 60%-40%	\$1,030		
M anaged Pole Service Life	30 Years		
•	35 Years		
	40 Years		
	50 Years		

Wood Pole Life Cycle Cost Analysis

30 Year Pole Life

1,000,000 poles/30 years = 33,333 poles per year

 $33,333 \times 1,030 \text{ each} = $34,333,333 \text{ per year}$

Wood Pole Life Cycle Cost Analysis

35 Year Pole Life

1,000,000 poles/35 years = 28,571 poles per year

 $28,571 \times 1,030 \text{ each} = \$29,428,571 \text{ per year}$

Wood Pole Life Cycle Cost Analysis

40 Year Pole Life

1,000,000 poles/40 years = 25,000 poles per year

 $25,000 \times 1,030 \text{ each} = \$25,750,000 \text{ per year}$

Wood Pole Life Cycle Cost Analysis

50 Year Pole Life

1,000,000 poles/50 years = 20,000 poles per year

 $20,000 \times 1,030$ each = 20,600,000 per year

Wood Pole Life Cycle Cost Analysis Summary

Attainable Life	Annual Cost	Savings Per Year
30 Years	\$34,333,333	
35 Years	\$29,428,571	\$4,904,762
40 Years	\$25,750,000	\$8,583,333
50 Years	\$20,600,000	\$13,733,333

Summary:

- 1. Optimize the Pole Plant Life Cycle Management Program.
- 2. Control and minimize unnecessary replacement costs.
- 3. Leverage the visit to the pole.

Wood Pole Service Life Management Options

Predictive Maintenance. or

Preventative Maintenance, or

Combined Benefits of both

Predictive & Preventative Maintenance

Predictive Maintenance

Definition: Locate and Report conditions

which

may contribute to a failure, to allow

for

repair or maintenance at low cost.

Purpose: Avoid outages and failures.

Examples:

Visual inspections

Split Top

Leaking Transformer Wood Pin Insulator Trees in Wires

Broken Ground Wire Broken Guy Wire

Preventative Maintenance

Definition: Proactive intervention, usually in the normal aging process of an asset,

designed to extend its reliable life.

Purpose: Save money. Relative small maintenance

investments yield high returns by

reducing

capital spending

Examples:

Remedial Treatment of Wood Poles

Trees Trimming

Tower Printing

Best-In-Class Wood Pole Life Cycle Management Program

Predictive Maintenance

- + Preventative Maintenance
- + Field Data Acquisition
- + Restoration
- + Management Controls
- = Best-In-Class Wood Pole Plant Life Cycle Management

Best-In-Class Wood Pole Life Cycle Management Program

The Details:

- 1. Accurate Inspection
- Pole Condition
- Overhead Facilities
- Selective Remedial Treatment candidates
- Identify 98% of treatment
- Apply effective and appropriate remedial treatment

- 3. Prioritize "Reject Poles
- Redefine or reconfirm reject criteria
- Prioritize follow-up costs based on
 - real comparative risk
- Optimize use of lower cost Pole
 - Restoration
- 4. Optimize Field Data
- Joint use data
 - GIS applications (mapping,
 - transformer to meter ties, etc.)
- Pole Maintenance GIS

Partial Excavate/ Reliability Based Selective Treatment = Maintenance for Wood Poles

- * Inspection is intrusive and can be accurate
- * Remedial treatment applied based on pole condition, not pole age
- Lower cost per pole than full G/L (time-based maintenance) but can yield equivalent results

Overview of 1,000 Poles

Full Groundline		Partial Excavate/Selective Treat				
Visual	Quantity 200 150	Price Each \$2.50 \$4.00	Work Item Visual Sound & Bore Partial Excavate, Pass or Reject	Quantity 200 150	Price Each \$2.50 \$4.00	
Excavate, Treat or reject	_650	\$22.50	Excavate, Treat or reject	200	\$22.50	
	1,000 pales	\$15.73 Avg. Cost/Pole		1,000 pales	\$10.10 Avg. Cost/Pole	
				35% cost savings		

50,000 poles per year = \$281,500 savings per year 80,000 poles per year = \$450,400 savings per year

For Example Purpose Only