

SPECIFIER GUIDE

No. WPC - 07-2025

Round and Sawn Wood Piles

Wood Preservation Canada • 613-737-4337 • info@woodpreservation.ca Wood Preservation Canada provides this information from sources believed to be true. However, neither WPC or its members guarantee the accuracy of any information published herein and these parties are not responsible for any errors, omissions or damages arising out of or relating to its use. This document is published with the understanding that WPC, its members and the authors are supplying information, but are not attempting to render engineering or other professional services.

SPECIFYING ROUND AND SAWN WOOD PILES

WPC - 07-2025

Product Introduction

Pressure treated round piles are typically used to support critical vertical loads in marine pilings, highways bridges, railroad trestles versus pressure treated sawn piles which are also used in marine applications, but more commonly used to support buildings. Treated wood piles have a long record of performance, competitive, cost-effective pricing and far greater environmental benefits compared to alternatives. Pressure treated round and sawn piles have been used to support structures for hundreds of years. In the early days, round or sawn piles were coated with a variety of vegetable and mineral based oils to preserve the wood and extend the service life of these projects. In the Roman days, timbers were coated in pitch and charred to extend the service life. Today, we rely on more modern methods a preservation that use a combination of a heavy-duty preservative along with pressure to extend the service life of these products. Even in this technology dominated era, wood piles remain the top choice for highway or railroad bridges as well as a variety of marine structures.

For details on the manufacturing and dimensional requirements of untreated Roundwood piles refer to CAN /CSA 056-15 Round Wood Piles® and for the details and physical requirements for untreated sawn wood piles refer to the National Lumber Grades Authority (NLGA), Standard Grading Rules for Canadian Lumber. The information in this guide focuses on the requirements for pressure treated round timbers and sawn wood piles as specified in the CAN / CSA – O80 Series – 21, Wood Preservation®.

Allowable Wood Species and Related Use Categories

Pressure treated sawn wood piles used in ground contact or freshwater typically require a use category rating of UC4.2 while round timber and sawn wood piles used in brackish or saltwater require a use category rating of UC5A. For complete details on processing and treatment of round and sawn wood piles consult CAN / CSA – O80 Series – 21, Wood Preservation[©].

Preservative Systems Used in Treatment of Round Timber Piles – Marine Applications			
UC5A – Coastal waters – brackish water or saltwater and adjacent mud zone			
Chemical Name Abbreviation Allowable Use Category			
Ammoniacal Copper Zinc Arsenate	ACZA	UC5A	
Chromated Copper Arsenate	CCA	UC5A	
Creosote	CR	UC5A	

Preservative Treatments – Round Timber Piles – Marine Applications					
UC5A – Coastal waters – brackish water or saltwater and adjacent mud zone					
	Preservative Syste	Preservative System Retention kg/m³*			
Species Group	ACZA	CCA	CR		
Jack pine	30.0	24.0	290		
Red pine	30.0	24.0	290		
Southern pine	30.0	24.0	290		
Coastal Douglas fir	30.0	24.0	290		
* Retention levels vary by species and preservative system – Refer to CAN / CSA 080.1 – 21 Table 23 for complete details					

SPECIFYING ROUND AND SAWN WOOD PILES

WPC - 07-2025

Preservative Systems Used in Treatment of Solid Sawn Products (boards, lumber, and timber) for marine (saltwater) applications			
UC5A – Coastal waters – brackish water or saltwater and adjacent mud zone			
Chemical Name	Abbreviation	Allowable Use Category	
Ammoniacal Copper Zinc Arsenate	ACZA	UC5A	
Chromated Copper Arsenate	CCA	UC5A	
Creosote	CR	UC5A	

Preservative Systems Used in Treatment of Solid Sawn Products (boards, lumber, and timber) for marine (saltwater) applications			
ckish water or saltwate	r and adjacent mud z	one	
Preservative System Retention kg/m ³ *			
ACZA	CCA	CR	
30.0	24.0	290	
30.0	24.0	290	
30.0	24.0	290	
30.0	24.0	290	
30.0	24.0	290	
30.0	24.0	290	
30.0	24.0	290	
30.0	24.0	290	
	ater) applications ckish water or saltwate Pres ACZA 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.	ater) applications ckish water or saltwater and adjacent mud at a preservative System Reternative Sys	

Preservative Systems Used in Treatment of Solid Sawn (Timber) Piles			
UC4.2 – Ground contact or freshwater – high decay hazard / critical structural components / difficult			
to replace			
Chemical Name	Abbreviation	Allowable Use Category	
Ammoniacal Copper Zinc Arsenate	ACZA	UC4.2	
Chromated Copper Arsenate	CCA	UC4.2	
Creosote	CR	UC4.2	
Creosote	CR-S	UC4.2	
Pentachlorophenol	PCP-A / PCP-C	UC4.2	

SPECIFYING ROUND AND SAWN WOOD PILES

WPC - 07-2025

Preservative Systems Used in Treatment of Solid Sawn (Timber) Piles					
UC4.2 – Ground contact or freshwater – high decay hazard / critical structural components / difficult					
to replace	- · · · · · · · · · · · · · · · · · · ·				
Species Group	Preservative System Retention kg/m³*				
	ACZA	CCA†	CR	CR – S	PCP-A/PCP-C
Eastern white, Ponderosa	8.0	8.0	128	128	6.4
and Red pine					
Jack and Lodgepole pine	8.0	8.0	128	128	6.4
Southern pine	8.0	8.0	NR	NR	NR
Western white pine	8.0	8.0	NR	NR	NR
Hem-Fir North, Eastern and	8.0	8.0	160	160	8.0
Western Hemlock, and True					
firs					
Coastal Douglas fir	8.0	8.0	160	160	8.0
Western larch	NR	NR	128	NR	6.4
Beech	NR	NR	128	128	6.4
Birch	NR	NR	128	128	6.4
Maple	NR	NR	128	128	6.4

^{*} Retention levels vary by species and preservative system - Refer to CAN / CSA O80.1 – 21 Table 10 for complete details † To be used only in accordance with PMRA requirements. Industrial products and permanent wood foundations are

NR

128

128

6.4

examples of allowable uses. Refer to CAN / CSA O80.1 – 21 Table 10 for complete details

NR

Product registration

Red Oak

Wood preservatives and their uses are regulated by Health Canada's Pest Management Regulatory Agency (PMRA).

Recommended Reference Standards

National Lumber Grades Authority (NLGA), Standard Grading Rules for Canadian Lumber (2014) CAN/CSA O56-15 Round Wood Piles©*

CAN / CSA - O80 Series - 21 Wood Preservation ©

Source © 2021 Canadian Standards Association

With the permission of Canadian Standards Association, (operating as "CSA Group"), 178 Rexdale Blvd., Toronto, ON, M9W 1R3, material is reproduced from CSA Group's standard **CAN/CSA-O80 Series 15 Series** – **Wood Preservation**. This material is not the complete and official position of CSA Group on the referenced subject, which is represented solely by the Standard in its entirety. While use of the material has been authorized, CSA Group is not responsible for the manner in which the data is presented, nor for any representations and interpretations. No further reproduction is permitted.

For more information or to purchase standard(s) from CSA Group, please visit the store csagroup.org or call 1-800-463-6727.