

In vitro oral bioavailability testing in human health risk assessment of CCAcontaminated soils: short review & case study

Prof. Gérald J. ZAGURY, Eng. Ph.D. Department of Civil, Geological, and Mining Engineering, École Polytechnique de Montréal, Canada

CWPA 2007 Conference, October 17

Outline

Background

- Oral bioavailability in HHRA
- Definitions: bioaccessibility vs bioavailability
- In vitro or in vivo?

Bioaccessibility

- What we know
- What we do not know
- Case study
 - Soils near CCA-treated utility poles (As, Cr, Cu)
- Conclusions

Remediation of contaminated sites Using bioavailability

Generic criteria for site remediation

- Maximal concentrations allowed according to soil use
- General approach
- Human Health Risk Assessment
 - Remediation goals specific to the site
 - Consideration of different exposure pathways
 - Inclusion of contaminant bioavailability in exposure assessment

Determination of oral bioavailability

- In vivo
- In vitro

Why do we need bioavailability ? Risk assessment

Non carcinogenic risk

- Calculated with the Hazard Index:
- $\blacksquare HI = CDI / RfD$
- CDI = Chemical Daily Intake (mg/kg/d) ; RfD = Reference Dose (mg/kg/d)

Carcinogenic risk

- Probabilistic approach
- $\blacksquare Risk = CDI \times CSF$
- CSF = Cancer Slope Factor (mg/kg/d)
- Adjusted dose

CDI_{adjusted} = CDI x RBA

Risk assessment: Exposure Daily intake

Chemical daily intake (CDI) absorbed by incidental ingestion of soil (µg/d) (Hemond and Solo-Gabriele, 2004):

Exposure Point Concentration mg/kg

% Bioavailability ?

CDI_{adjusted} = EPC x SIR x EF x CF x RBA

- SIR: soil ingestion rate: 100 mg/d (US EPA, 1997)
- EF: exposure frequency: 130-260 d/y (Dubé et al., Hemond and Solo-Gabriele, Ursitti et al., 2004)
- CF: unit conversion factor: 10⁻³

Definitions **Bioavailability**

In vivo bioavailability: the fraction of a contaminant that reaches the central compartment (blood) from the GI tract (Ruby et al., 1999)

Assessing in vivo bioavailability

- Principle: measurement of contaminant concentration in tissues or excreta at various time points after feeding
- Choice of study design based on element behaviour in the body
 - As: well absorbed, rapidly excreted in the urine
 - Pb: accumulated in bones
 - Cd and Hg: accumulated in kidney and liver

Kelley et al., 2002; NRC, 2003

Definitions **Bioaccessibility**

Bioaccessibility: soluble fraction of a contaminant in the GI tract that is potentially available for absorption

(In vitro) bioaccessibility estimator of In vivo oral relative bioavailability (RBA) (validated method for As, Cd, and Pb, Rodriguez et al., 1999; Schroder et al., 2003, 2004)

In vitro bioavailability Some existing methods

Gastric phase

- Simulation of stomach conditions
- Acidic conditions, mixing, 37°C

Gastrointestinal phase

- Simulation of stomach and intestine (pepsin, bile, pancreatin...)
- Mixing, 37°C
- IVG (Rodriguez et al., 1999) validated for As, Pb, Cd
- PBET and SBRC (Ruby et al., 1996) validated for As, Pb

European regulation Toys & bioaccessibility

 Directive 88/378/CEE: Safety of toys
 Maximal bioavailability for 8 chemical elements : Sb, As, Ba, Cd, Cr, Pb, Hq, Se

Standard CEN EN 71-3:1994: Safety of toys

- Applied by 18 European countries
- Toy material ground to < 500 µm
- Extraction at 37°C, 2 h, pH = 1.5 (HCI)
- Solid: liquid ratio = 1:50 (allows ratio up to 1:500)

In vitro vs In vivo

Costs (200 \$/sample vs > 30 000 \$/sample)

- Duration of the test (1 d vs 2-4 weeks)
- Difficulties in the application
- Ethics (avoid the use of animals)
- Dose that has to be administered in vivo is too high
 - Concentrations in soils are not relevant
 - Volume of ingested soil higher than the one ingestible by a child
- Representativity
 - In vivo tests performed on a little number of samples
- Extrapolation : animal to human

Environment Agency, 2005. Escher and Hermens, 2004. Marschner et al., 2006. Pouschat and Zagury, 2006. Rodriguez et al., 1999. Ruby, 2004. Saikat, 2006

Bioaccessibility of metals in soils What we know

WONTREAValidation of in vitro methods: what must be done

- Correlation In vivo In vitro
 - Wide variety of soils (different origins)
- Inter-laboratories comparison (Round Robin with BARC)
- Rigorous QA/QC
 - Blanks, spiked samples, replicates, certified soil samples
- Sensitivity analysis of method
 - pH, extraction time, soil particle size
- Evaluation of limitations
- Comparison to existing protocols
- Submission to an independent scientific arbitrage.

Bioaccessibility Acceptance by authorities

Bioaccessibility – Europe Acceptance by authorities

Outline

Background

- Oral bioavailability in HHRA
- Definitions: bioaccessibility vs bioavailability
- In vitro or in vivo?
- Bioaccessibility
 - What we know
 - What we do not know
- Acceptance of in vitro tests around the world
- Case study
 - Soils near CCA-treated utility poles (As, Cr, Cu)
- Conclusions

Case study

Case studies: CCA-treated poles Background

Since Materborne wood preservative composed of arsenic, Since Jan Junio 2004 US EPA (and Health Canada) do not allow CCA products for residential uses (katz and salem 2005) As₂O₅).

Contamination:

CCA-treated poles Objectives

To assess the bioaccessibility of arsenic (and Cr and Cu) in a scenario of soil ingestion near CCA-treated utility poles

To estimate an average As, Cu, and Cr daily intake (CDI adjusted) from ingestion of soil near CCA-treated utility poles.

CCA-treated poles Methodology

- Installation of 12 CCA-treated poles in 4 different soil types (3 poles/site)
- Sampling and characterization of soils after 6,18, and 36 months of service
- Bioaccessibility on composite surface samples collected near each wood pole
- Bioaccessibility on certified soils (SRM 2710 & 2711) and procedure blanks (QA/QC)

CCA-treated poles Evaluation of bioaccessibility

- In vitro gastrointestinal extraction (IVG) of soils at 37°C, modeling a child digestive tract
- Ig of soil < 300 µm in 150 mL of solution</p>
- Gastric phase, 1h, with porcine pepsin, pH = 1.8 (HCI)
- Intestinal phase, 1h, with porcine pancreatin and bile, pH = 5.5

Results : CCA-treated poles

Soil characterization (around 12 wood poles)

Physicochemical characteristics of surface soils near CCA-trated utility poles (soil < 2 mm)												
Site & Type	Soil (n=3)	Sand %	Silt %	Clay %	pН	CEC meq/100g	тос	As (mg/kg)	Cu (mg/kg)	Cr (mg/kg)		
1 Clayey	1A 1B 1C	21.9 23.8 16.8	25.1 32.4 36.5	12.2 17.8 17.4	6.10 6.17 6.37	17.3 29.8 23.0	2.6 1.6 2.9	170 94 77	720 390 210	97 57 43		
2 Organic	2A 2B 2C	40.4 51.2 50.0	35.7 31.2 37.7	1.40 6.50 4.50	7.13 7.17 6.20	286 324 137	20 37 40	170 160 170	2 100 4 300 2 800	270 430 320		
3 Sandy	3A 3B 3C	85.9 47.4 82.0	11.2 17.8 11.1	2.50 8.20 0.90	6.18 6.35 6.62	28.8 25.5 29.7	2.5 2.3 2.2	160 110 200	610 330 720	73 48 82		
4 Sandy	4A 4B 4C	45.8 62.0 43.2	15.7 10.8 30.4	10.8 1.50 9.50	6.64 5.47 5.27	38.4 53.1 42.5	5.4 6.1 5.6	170 120 170	660 730 770	63 77 66		
Mean Std-dev Minimum Maximum	-	47.5 21.6 16.8 85.9	24.6 10.6 10.8 37.7	7.50 5.60 0.90 17.8	- - 5.27 7.17	86.3 107 17.3 324	11 14 1.5 40	148 38 77 200	1 195 1 240 210 4 300	136 129 43 430		
Certified	SRM 271 SRM 271	0 1	-	-	5.20 8.00	-	3.2 1.3	538 95	2 689 97	15 17		

Concentration of As homogenous in all soil types (no significant difference)

Results: CCA-treated poles As bioaccessibility

Arsenic bioaccessibility in soils (< 300 µm) collected near CCA-treated utility poles

Soil (n=3)	As (mg/kg dry soil)	Soluble As (%)	Soluble As per site (%)	Bioaccessible As (gastric) (%)	Bioaccessible As (gastric) per site (%)	Bioaccessible As (intestinal) (%)	Bioaccessible As (intestinal) per site (%)
1A 1B 1C	225 ± 6 131 ± 0 58.0 ± 2.1	1.2 ± 0.1 1.2 ± 0.1 1.0 ± 0.1	1.1 ± 0.2	25.7 ± 3.0 24.2 ± 2.9 20.7 ± 2.9	23.6 ± 2.6	28.3 ± 2.2 26.8 ± 2.8 25.0 ± 2.7	26.7 ± 1.7
2A 2B 2C	219 ±6 172 ±19 153	15 ± 1 22 ± 2 35	24 ± 10	56.2 ± 4.7 41.7 ± 3.8 63.6 ± 1.2	53.8 ± 11	59.1 ± 7.0 46.7 ± 2.8 66.3 ± 2.3	57.4 ± 9.9
3A 3B 3C	144 ±6 37.4 ±2.5 231 ±17	2.6 ± 0.1 1.3 ± 0.2 4.1 ± 0.4	2.7 ± 1.4	40.5 ± 3.4 42.7 ± 2.2 46.3 ± 0.6	43.2 ± 3.0	47.7 ±0.8 51.2 ±2.5 53.5 ±1.3	50.8 ± 2.9
4A 4B 4C	251 ± 12 173 ± 10 238 ± 6	1.4 ± 0.1 2.1 ± 0.1 2.1 ± 0.1	1.9 ± 0.4	26.4 ± 1.1 23.0 ± 1.9 23.5 ± 1.0	24.3 ± 1.8	30.9 ± 1.3 27.1 ± 2.6 25.9 ± 0.5	27.9 ± 2.6
Mean Std-dev	169 69	7.4 11		36.2 14.4		40.7 14.9	
SRM 2710 SRM 2711 CRM 025	538 ± 12 95 ± 5 319 ± 12	0.3±0.0 -	0.3 ± 0.0	27.6 ± 0.4 45.7 ± 6.3 71.3 ± 3.7	27.6 ± 0.4 45.7 ± 6.3 71.3 ± 3.7	25.2 ± 0.3 43.0 ± 5.6 64.8 ± 5.2	25.2 ± 0.3 43.0 ± 5.6 64.8 ± 5.2

Lower: fine-grained soils (loams). Max: organic and sandy soils

CCA-treated poles Results: Arsenic

Bibaccessibility & soil properties:

- Correlated (+) with TOC content (r² = 0.36, p < 0.05, n=12)</p>
- Correlated (+) with sand content (r² = 0.52, p < 0.05, n = 9)</p>
- Correlated (+) with water soluble As ($r^2 = 0.51$, p < 0.01, n = 12)
- Correlated (-) with clay content (r² = 0,43, p < 0.05; n = 12)</p>
- NOT correlated with total As in soil samples.

Mean in vitro bioaccessibility: 41 % (25 – 66 %)

Other metals:

- Cr: 8.5 % (0 33 %)
- Cu: 54 % (19 89 %)

In vivo RBA in CCA-soils: around 50 % (Casteel et al, 2003)

CCA-treated poles Arsenic Intake

Intake of As from incidental ingestion of CCAcontaminated soil:

■ EPC = 169 mg/kg, RBA = 41 %

Inorganic As intake from food + water for children: 0.4 – 0.6 µg/kg/d (Yost et al., 2004)

As intake from CCA-contaminated soil ingestion much lower than As intake from water and food.

Pouschat and Zagury (2006), Environ. Sci. Technol.

CCA-treated poles **Cu and Cr Intake**

- Intake of Cu from incidental ingestion of CCA-contaminated soil:
 - EPC = 1200 mg/kg, RBA = 54 %
 - 9-90 µg Cu /d < 340-440 µg/d (Recommended Dietary Allowance for Children (1-8 yr old) (NAS, 2001)
- Intake of Cr from incidental ingestion of CCA-contaminated soil:
 - EPC = 136 mg/kg, RBA = 8.5 %
 - 0.2-2 µg Cr /d < 11-15 µg/d (Adequate Intake for children (1-8 yr old) (NAS, 2001)
- Cu and Cr intake from incidental CCA-contaminated soil ingestion is lower than recommended dietary values !

Pouschat and Zagury (2007), Pract. Period. Haz. Tox. Radioact. Waste Mngmt. ASCE

Conclusions

Multiples advantages of in vitro tests

Currently acceptable (As and Pb) in HHRA if fully validated (QA/QC, in vivo-in vitro, ...) and well supported by other techniques Metal intake from incidental ingestion of CCA-contaminated soils by young children is very low and the chances to observe adverse health effects appear limited.

Acknowledgements

- T. Konuk, A. Lefeuvre, G. Passavy.
- Bell Canada & Hydro Québec
- The Chair in Site Remediation and Management (Chemical Engineering Dept, École Polytechnique, Montreal, Canada).
- Natural Sciences and Engineering Research Council of Canada

